List of topics for quantitative finance with concise key points and useful resources. For Quant interview preparation and quantitative finance introduction, or could be cheatsheets. Motivated by Ran Ding.
resources
- <Stochastic Calculus for Finance II>
- <Introduction to the Mathematics of Financial Derivatives>
key points
- Derivative
- notation
- Leibniz's notation: $\cfrac{dy}{dx}, \cfrac{d^ny}{dx^n}$
- Lagrange's notation: $f^{'}, f^{"}, f^{n}$
- Newton's notation: $\dot{y}, \ddot{y}$
- Rules for basic functions
- $\frac{d}{dx}x^{a}=ax^{a-1}$
- $\frac{d}{dx}e^{x}=e^{x}$
- $\frac{d}{dx}a^{x}=a^{x}\ln(a),\ a>0$
- $\frac{d}{dx}\ln(x)=\frac{1}{x},\ x>0$
- $\frac{d}{dx}\log_{a}(x)=\frac{1}{x\ln(a)},\ x,a>0$
- Rules for combined functions
- Product rule: $(f g)^{\prime}=f^{\prime} g+f g^{\prime}$
- Quotient rule: $\left(\frac{f}{g}\right)^{\prime}=\frac{f^{\prime} g-f g^{\prime}}{g^{2}}$
- Chain rule: If $f(x)=h(g(x))$, then $f^{\prime}(x)=h^{\prime}(g(x)) \cdot g^{\prime}(x)$
- Differential
- we call $dy$, $df$, or $f(x)dx$ be differential of a function (with respect to x)
- Taylor series
- $f(x)=f(a)+\frac{f^{\prime}(a)}{1 !}(x-a)+\frac{f^{\prime \prime}(a)}{2 !}(x-a)^{2}+\frac{f^{\prime \prime \prime}(a)}{3 !}(x-a)^{3}+\cdots$
- when $a=0$, also called a Maclaurin series
- $f(x)=f(0)+\frac{f^{\prime}(0)}{1 !}x+\frac{f^{\prime \prime}(0)}{2 !}x^{2}+\frac{f^{\prime \prime \prime}(0)}{3 !}x^{3}+\cdots$
- $e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n !}=1+x+\frac{x^{2}}{2 !}+\frac{x^{3}}{3 !}+\cdots$
- $\ln (1-x)=-\sum_{n=1}^{\infty} \frac{x^{n}}{n}$
- Moment generating function
- $M_{X}(t)=\mathrm{E}[e^{t X}],\quad t\in\mathbb{R}$
- $E(X^{n})=M_{X}^{(n)}(0)=\cfrac{d^{n}M_{X}}{d t^{n}}|_{t=0}$
- prof:
- $M_{X}(t)=\mathrm{E}\left(e^{t X}\right)=1+t \mathrm{E}(X)+\frac{t^{2} \mathrm{E}\left(X^{2}\right)}{2 !}+\frac{t^{3} \mathrm{E}\left(X^{3}\right)}{3 !}+\cdots+\frac{t^{n} \mathrm{E}\left(X^{n}\right)}{n !}+\cdots$
- $\cfrac{d^{n}M_{X}}{d t^{n}}|_{t=0}=0+\cfrac{n!\mathrm{E}(X^n)}{n!}+0=\mathrm{E}(X^n)$
- p.d.f. of $y=g(x)$
- we have p.d.f. of x be $f_x(x)$
- $f_y(y)dy=f_x(x)dx$ (this is important)
- $f_y(y)=f_x(x)|\cfrac{dx}{dy}|=f_x(g^{-1}(y))|\cfrac{d}{dy}g^{-1}(y)|$
- Martingale
- $S_t$ is adapted to the filtration $\mathbb{F}_t$
- $S_t$ is integrable: $E[|S_t|]<\infty$
- $E_t[S_T]=S_t$
- Brownian Motion properties
- $E[W_{t_{i+1}}-W_{t_{i}}]=0$
- $\operatorname{Var[W_{t_{i+1}}-W_{t_{i}}]}=t_{i+1}-t_{i}$
- $W_t$ are jointly normal distributed
- If X and Y are normally distributed and independent, this implies they are "jointly normal distributed"
- $\operatorname{Cov}(W_t,W_s)=\operatorname{min(s,t)}$
- $E_t[W_s|\mathbb{F}_t]=W_t\ \forall\ s\geq t$
- $dW_tdW_t=dt$
- $dW_idW_j=0$
- $dW_tdt=0$
- integration by parts (in Riemann-Stieltjes integral)
- $\int^b_au(x)dv(x)=[u(x)v(x)]^b_a-\int^b_av(x)du(x)$
- or compactly $\int udv=uv-\int vdu$
- if $v(x)$ is $W_t$: $\int^t_0 f(s)dW_s=f(t)W_t-\int^t_0W_sf^{'}(s)ds$
- Itô's Lemma
- core: $df(t,X_{(t)})=f_t(t,X_{(t)})dt+f_X(t,X_{(t)})dX_{(t)}+\frac{1}{2}f_{XX}(t,X_{(t)})dX^2_{(t)}$
- product rule: $d(X_tY_t)=X_TdY_t+Y_tdX_t+dX_tdY_t$
- stochastic integral by parts: $\int^t_0g^{'}(W_u)dW_u=[g(W_u)]^t_0-\frac{1}{2}\int^t_0g^{''}W_udu$
- Geometric Brownian Motion
- stochastic process $S_{t}$
- $d S_{t}=\mu S_{t} d t+\sigma S_{t} d W_{t}$
- $S_{t}=S_{0} \exp \left(\left(\mu-\frac{\sigma^{2}}{2}\right) t+\sigma W_{t}\right)$
- $\mathrm{E}\left(S_{t}\right)=S_{0} e^{\mu t}$
- $\operatorname{Var}\left(S_{t}\right)=S_{0}^{2} e^{2 \mu t}\left(e^{\sigma^{2} t}-1\right)$
- Black-Scholes model
- Black–Scholes equation
- $\frac{\partial V}{\partial t}+\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} V}{\partial S^{2}}+r S \frac{\partial V}{\partial S}=rV$
- prove it yourself once
- Black–Scholes formula
- $c=S_{0} N\left(d_{1}\right)-K e^{-r T} N\left(d_{2}\right)$
- $p=-S_{0} N\left(-d_{1}\right)+K e^{-r T} N\left(-d_{2}\right)$
- $d_{1}=\frac{-L n K+L n S_{0}+\left(r+1 / 2 \sigma^{2}\right) T}{\sigma \sqrt{T}}$
- $d_{2}=\frac{-L n K+L n S_{0}+\left(r-1 / 2 \sigma^{2}\right) T}{\sigma \sqrt{T}}$
- prove it yourself once
- Jump Process $N_t$
- $P(N_t=n)=\cfrac{(ht)^n}{n!}e^{-ht}$
- $h$ is the intensity of the poisson process (expected number in time 1)
- compound poisson process
- $Q_t=\sum^{N_t}_{i=1}y_i\ \text{where y be i.i.d. random variable with}\ E[y_i]=\beta$
- $y$ and $N_t$ are independent
- $E[Q_t]=\beta ht$
- compensated compound poisson process
- $Q_t-\beta ht$
- martingale