log in
register

READ: <统计学家范剑青:机器是怎么学习金融的?>

Qingqi@2020-09-10 #read

source: https://mp.weixin.qq.com/s/h4e8AOXCBxs_y8N-SKNkiA

Why ML could be used in finance

  1. Asset's risk premium is fundamentally a prediction problem; ML methods are largely specialized for prediction.
  2. Candidates of factors are large and highly correlated; ML is designed for dimensionality reduction and variable selection.
  3. Form in asset pricing is usually complex and unknown; ML methods are designed to approx complex nonlinear associations.

FRAMselect method

  • finance factors are always highly correlated, 无法使用机器学习中常用的变量选择方法, 因为正则性不满足.
  • 把变量提取成不同的因子: 个性和共性. 这些变量的相关性会很弱.

instruments for factor learning

  • 如何利用instruments: 因子用instruments回归, 对拟合值做主成分分析.

裁剪与鲁棒性

  • 我们用因子模型来解决观测到股票相关的问题。我们是用裁剪数据来解决鲁棒问题,对回归问题我们用裁剪损失函数,即Huber损失函数,来得到鲁棒性质的。我们说过预测的好特征必须是鲁棒。

HFT

  • Momentum
  • Momentums and durations are predicable.

文本数据与资产定价

  • 学习文件和新闻的褒贬度,用它预测选择股票。传统一般用基于Dictionary的方法。

END

资产定价是一个预测问题, 机器可以学习金融。 1. 帮助处理大数据并从中选择重要因素和特征 2. 能很好应对过度拟合问题 3. 允许非线性学习极大地改善预测效果 4. 将稳健性和对抗性网络提炼为定价 5. 智能的预测带来的经济收益很大

Comments

Log in to add your comment

Don't have an account? register here